

LA-UR-21-29604

Approved for public release; distribution is unlimited.

Title: Modeling Gamma-ray and Neutron Spectroscopic Signatures in the Martian

Subsurface

Author(s): Simon, Juliana

Intended for: Report

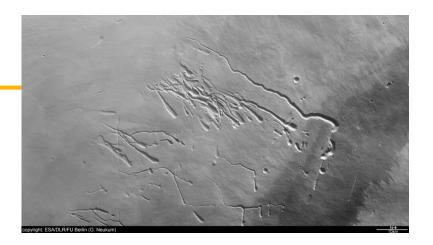
Issued: 2021-09-29

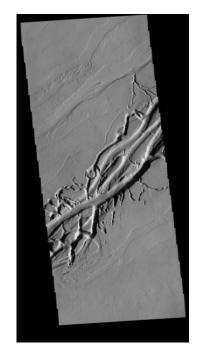
Modeling Gamma-ray and Neutron Spectroscopic Signatures in the Martian Subsurface

Juliana Simon

ISR-1 Summer Student Symposium 2021

Background


- Gamma-ray and neutron spectroscopy (GRNS) is used for geochemical remote sensing of planetary surfaces
- Gamma rays and neutrons are produced as secondary particles through the interaction of galactic cosmic radiation (GCR) and high energy solar particles with planetary surfaces
- Can be directly measured to help determine elemental composition, abundance, and hydration of surface materials



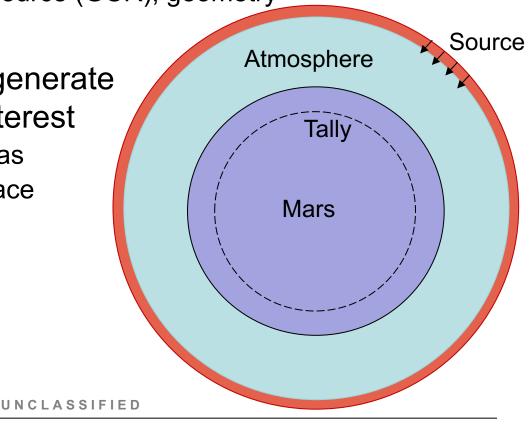
Background

- Martian caves / subsurface environments such as lava tubes have been identified from orbit
- Potential for astrobiological discovery because of their shielding effect from the harsh radiation on the surface and likely presence of elements necessary for life

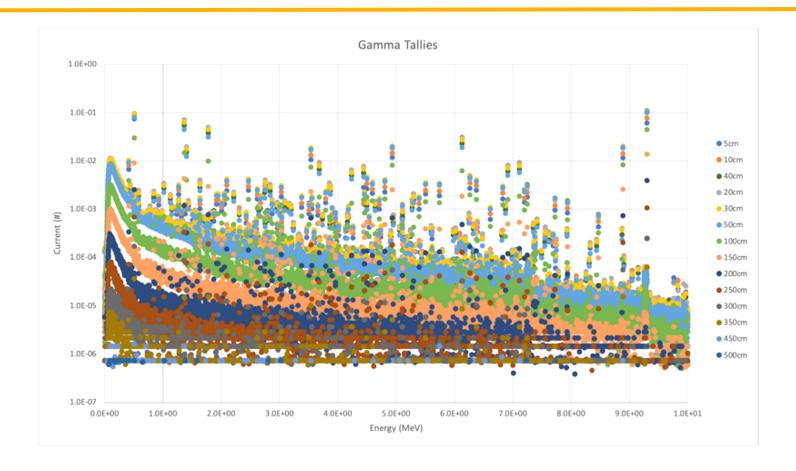
Top image: lava tubes at Pavonis Mons from ESA's Mars Express Spacecraft (esa.int);

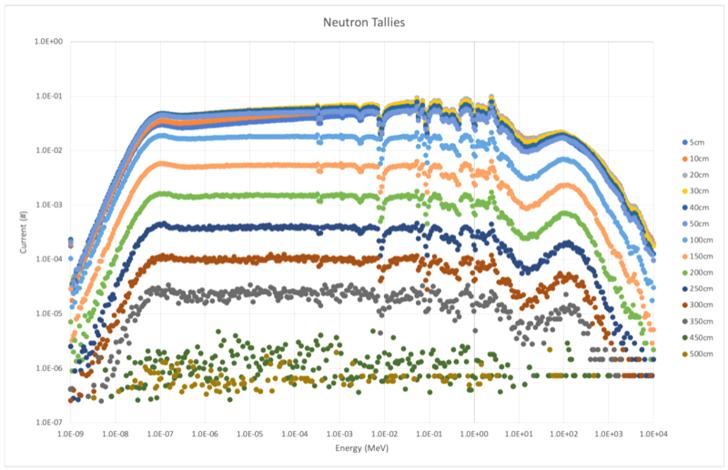
Bottom image: lava tubes between Olympus Mons and Alba Mons from NASA's Mars Odyssey Spacecraft (nasa.gov)

Objective


- Big picture: to determine the GRNS signatures in cave environments for future mission planning and instrument development
- This project seeks to develop Monte Carlo N-Particle (MCNP) models to constrain the GRNS at depths up to 5 meters and in cave interiors

Approach


- Adapting physical parameters of system into MCNP
 - Atmospheric composition and bulk chemical composition of planet, radiation particle source (GCR), geometry
- Running simulations to generate the particle spectra of interest
 - Protons, neutrons, gammas
 - F1 tally: current over surface
 - Vary by changes in depth



Results

Results

UNCLASSIFIED

Analysis / Summary

- Gamma spectrum requires further analysis to obtain characteristic gamma-ray lines
- Separate and analyze neutrons in epithermal, thermal, and fast ranges
- Drop off in particle production by 2-3m depth
 - Vary composition and hydration
 - Add variance reduction to deeper layers to increase particle production

Next Steps / Future Work

- Continue refining models:
 - Adjust particle source (GCR) to account for solar modulation
 - Develop geometry of cave / lava tube interiors
- Simulate active detection methods to compare with measurements captured via the pulsing neutron generator on MSL's Dynamic Albedo of Neutrons (DAN) instrument

Acknowledgments

LANL Mentors: Dr. Katherine Mesick, Dr. Patrick Gasda

ASU Advisor: Dr. Craig Hardgrove

Questions?

Thank you!

